
LA-UR-19-30566
Approved for public release; distribution is unlimited.

Title: Combining Observational and Computational Uncertainty in Calibration
Experiments

Author(s): Foster, Robert Christian
Gattiker, James R.
Weaver, Brian Phillip

Intended for: Report

Issued: 2019-10-17

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Combining Observational and Computational
Uncertainty in Calibration Experiments

Robert C. Foster, Jim Gattiker, Brian Weaver

Los Alamos National Laboratory

October 16, 2019

Abstract

Traditional computer experiments using emulators have treat the
emulator output as containing no error; however, this is not always
feasible, as there exist computational codes which produce stochas-
tic output, and future computations may require a balance between
the time or resources to run the code and the accuracy of the out-
put. This paper proposes a framework for incorporating both com-
putational uncertainty and observational uncertainty into an analysis
using a Gaussian process regression and calibration, and provides an
example using simulated output from the one-dimensional diffusion
equation. The particular values of observational and computation un-
certainty which minimize a cost function are obtained.

Keywords— Computer experiments, Gaussian process, Experimental de-
sign, Approximate computing

1

1 Introduction

In engineering and the sciences, experiments are often costly in terms of time and
money. As such, it is common to combine data from physical experiments with
data from a computer simulator of the system under study. These are typically
combined with a Gaussian process, as in Kennedy and O’Hagan (2001). Such
simulators are often stochastic, producing random output as a function of the
inputs. Even in simulators that are considered deterministic, the experimenter
will likely have control over aspects of the code which can be manipulated to
increase or decrease the precision of the output.

This paper proposes combining observations from physical systems with
simulated data points from the computer emulators and incorporates both ob-
servational error on the physical system and calculation error from the computer
model. This can be used to investigate the outcome of trading off between accu-
racy in observed data points and accuracy in simulated data points, both in terms
of statistical measures of the uncertainty in the final analysis and measures of the
actual costs in time and money.

Section 2 describes a framework for computer experiments which includes
both sources of uncertainty. Section 3 proposes a general iterative method and
describes terminology for obtaining contours in the space of experimental designs.
Section 4 shows an application of the previously described framework and termi-
nology to a simple Gaussian process regression emulator representing the outcome
of the one-dimensional diffusion equation.

2 Ambiguous Observation and Approximate

Computation

Suppose that an experiment measures the outcome of a physical system under the
influence of one or more factors. Define θ, which can be a scalar or vector, as
the chosen level or levels of the factors. It is typical to directly manipulate θ and
collect observed data points of the system. Define these observed data points as

yobs = η(θ) + εobs

εobs ∼ N(0, σ2obs)
(1)

where η(θ) is the physical response as a function of the factor level(s) θ. These
have observational error, which is commonly modeled as normally distributed with
mean 0 and variance σ2obs, and which may be a sum of multiple independent sources
of error.

If time and money were infinite, then an experiment would be conducted
entirely with yobs and analyzed in a traditional fashion, such as with an analysis of
variance. In the sciences, however, such observations can be expensive and time-
consuming to collect, and so observations of the physical system are often paired
with simulated observations generated from emulators at at different levels of the
given factors.

Realistic emulators of physical systems commonly operate by solving col-
lections of partial differential equations which are believed to accurately model the
physical system in question. For the state of the system at location x and at time
t, define

ux,t = u(x, t) (2)

where ux,t is taken to be the “true” state of the emulator (not the true physical
system), absent all sources of uncertainty. Note that ux,t can be either a scalar or
vector.

These emulators can also be time consuming to run, and are often stochas-
tic, producing output which can be modeled as as a random variable as a function
of the inputs. The experimenter generally has a degree of control over the degree
of stochasticity of the output, however, and can reduce the time and accuracy
required at the cost of precision of the solution. For example, methods which op-
erate by stepping forward discretely in time can reach the solution faster by taking
larger time steps, but at the cost of a worse approximation to the “true” solution
ux,t. This can be seen as a form of adding additional noise into the solver. The
resulting output is often treated as deterministic, but it should be seen as random
variable which is a function of the step size.

Suppose one such solver is used with time step h. The state of the system
ux,t+h is calculated at each successive step as a function f(ux,t) of the current state
of the system at a given location. The noise introduced by the time discretization
(or linear discretization error, or any other source of computational uncertainty)
is additional error that can be modeled as an additive error to each step:

u∗x,t+h = f(u∗x,t) + δx,t (3)

Once again, u∗x,t and δx,t may be either scalars or vectors. The initial values ux,0
are assumed to be known with no uncertainty, though if this is not the case the
initial values can be seen as including noise δx,0 with no additional change to the
framework. Note that the states are now u∗x,t instead of ux,t - the notation u∗x,t is
taken to be ux,t with uncertainty. Though any error distribution may be used in
practice, for this paper the δx,t are taken to be independent draws from a normal
distribution with mean 0 and standard deviation σcomp.

δx,t ∼ N(0, σcomp) (4)

The standard deviation σcomp represents the control the experimenter has over
the stocasticity of the code. By increasing or decreasing σcomp, for example by
increasing or decreasing the time step h, the experimenter can make the results
more or less accurate as desired.

Suppose the system is run until a stopping time T . The final system state,
with computational uncertainty, is then modeled as

u∗x,T = ux,T + εx

The observation is assumed to have a single additive error εx. Again, though any
error distribution may be used, for this paper the errors are taken to be normally
distributed with mean 0 and standard deviation σcalc.

εx ∼ N(0, σcalc)

Note that σcomp and σcalc are not equivalent - because the process applies the
(possibly nonlinear) solver to noisy observations repeatedly, compounding the noise
at each step, the stepwise errors may interact in unexpected ways, and the error on
the final step may have either larger or smaller variance than the stepwise additive
noise.

In general, σcalc is the quantity of interest. More complex codes outside
of the examples of this paper will generally have multiple inputs to control the
stochasticity of the code, and the effect of manipulating the inputs will be more
than simply an additive error with a single variance, but the cumulative effects of
all the errors will still produce a single error for each output. Even when σcomp is
an unreasonable assumption, or the specific amount of stepwise error introduced
is difficult to determine in practice, a σcalc remains and should be estimated.

The simulated data point is then generally some function of the final state
of the system. This should serve as an estimate of η(θ)

ysim = h(u∗x,T) = h(ux,T + εx,T) = η̂(θ)

The simplest case, which is used in this paper, is to simply take h(u∗x,T) = u∗x,T .

ysim = η̂(θ) = ux,T + εx

εx ∼ N(0, σcalc)
(5)

Hence, the emulator output ysim = u∗x,T may be seen as an estimate of a “true”

state ux,T and an error state εx. Then combining yobs points as in Equation (1)

with ysim points as in Equation (5) allows for a computer experiment in which
both observational and computational uncertainty are incorporated.

3 Costs and Boundaries

3.1 Iterative Algorithm

Given a set of observed data points yobsi for i = 1, . . . , n as in equation (1) and
simulated data points ysimi for i = 1, . . . ,m as in equation (5), these points are
typically combined with a Gaussian process in order to estimate the response as
a function of the inputs, as in Kennedy and O’Hagan (2001) and Higdon et al.
(2004). The presence of error in the emulator output has thus far been ignored,
but it plays an important role in certain types of codes, such as in Baker et al.
(2015).

Ideally, the experimenter would like to choose values of σobs and level of
computational error leading to a desired σcalc before the experiment is conducted
that meet some threshold of uncertainty on the final output, but which still fit
within the experimental budget. Decreasing σobs is, in many experiments in the
sciences, not a simple task - construction of new facilities that allow for increased
precision of measurements can cost millions of dollars or more. Decreasing the
level of computational error, by for example decreasing the time step, can lead to
codes which run for weeks or months at a time to generate a single point.

This leads to the obvious dilemma: how does one estimate the proper-
ties of an analysis which uses observational data, before collecting the data? In
the case of the physical sciences, there may be data from preexisting experiments
which can be used (possibly with modification) to provide an approximation to
the unknown future experimental data. The emulator also provides a reasonable
solution: simulated data points from the emulator can be used as “stand-in” points
for the observed data points. In particular, high-accuracy emulator data points
in which computational error is negligible should be used to avoid confounding
computational uncertainty with observational uncertainty. It is likely that the
emulator still contains bias; however, so long as the bias is not too significant the
resulting analysis is unlikely to be largely affected. If bias is a concern, the com-
puter output may be modified by some quantity to fit a standard discrepancy term
in the analysis. Using either prior experimental data or high-accuracy emulator
data points represents a reasonable compromise between repeatedly performing
physical experiments (which, if it were possible, computer emulators would not
be used) and simply guessing. The experimenter can then repeatedly perform
a pseudo-experiment using the stand-in yobs to observe the resulting quantity of
interest.

Suppose the quantity of interest is an α% interval length from the poste-
rior distribution for some unknown factor level θ. This is the classic calibration
problem. The following iterative method is proposed to determine optimal levels
of σobs and computational error, leading to a desired σcalc, for determining the
posterior interval length.

1. Determine the experimental design, including the locations in parameter
space where yobs and ysim data will be collected. For the yobs, either obtain
pre-existing experimental data or, using the computer emulator, conduct
high-accuracy simulations at the chosen locations in parameter space.

2. Choose a given level of observational error σobs and level of computational
error σcomp, simulate ysim data using the emulator with chosen level, conduct
the analysis as planned with chosen σobs, and obtain σ̂calc and the posterior
interval length for θ. This is one pseudo-experiment.

3. Fit a response surface to the set of posterior interval lengths for θ. The
specific method is not important - it can be a polynomial regression, a
Gaussian process, or something else - so long as predictive intervals around
the surface can be obtained.

4. Estimate or obtain the uncertainty surrounding each point on the response
surface, and determine the new points σobs and σcomp which meets some
objective of uncertainty reduction, potentially involving cost.

5. Repeat steps 2-4 until the experimenter is satisfied that the set of σobs and
σ̂calc values has been found which meets some predetermined criteria.

Though the posterior interval length for a parameter θ is used in this paper, the
above process is not dependent on it, and can be used for any other reasonable
posterior quantity of interest.

This iterative procedure faces two main obstacles: first, that variance
around the estimated response surface of step 3 will not be constant, as there
will be regions wherein the resulting α% confidence interval length will vary de-
pending on whether data is generated randomly which is sufficient to obtain a good
estimate of θ or not, and second, that a method of choosing a new point on the
response surface based upon the the current response surface, as in step 4, must
be developed. Both of these questions will have solutions which vary depending
on the specific properties of the problem. There are two methods of obtaining a
response surface that will likely be used the most: a Gaussian process or a poly-
nomial response surface. For Gaussian process models, the issue of determining a

point which maximizes some objective function, or points which form some con-
tour, have been explored in Ranjan et al. (2008), and Bect et al. (2012), Chevalier
et al. (2014), and Marques et al. (2018). Of these, Bect et al. (2012) provides the
most complete description of various strategies for point selection. Unfortunately,
Gaussian process models traditionally model the variance as constant, which is
known to be untrue for this particular problem.

The second option, a polynomial response surface is typically fit using a
least squares method, and this presents the natural solution of using weighted
least squares in order to fit a model with a non-constant variance. The weights are
typically taken as as proportional to the variance at each location. The primary
difficulty in the use of this method is determining the appropriate variance at
each location based off of a single point. It should be noted, however, that the
variance is likely to be largest in the areas of most rapid change, and so estimated
derivatives may provide some clues as to the appropriate weigts. There may also
exist prior information which may be used to determine the variance , or it may
be possible to use the model itself to estimate an error weight.

3.2 Notation for Optimization

The iterative procedure of Section 3.1 demands a precise notation for use in de-
termining a specific goal for optimization and incorporating any other quantities
of interest into the algorithm.

Define Lα(σobs, σ̂calc) as the resulting α% interval length from a single
pseudo-experiment as described in step 2. Due to the stochastic nature of both
the observed and simulated data points, this is necessarily a random quantity. The
choice is to use σ̂calc rather than σcomp because there should be a strong, if still
stochastic, relationship between σcomp and σ̂calc, and because costs associated with
a certain level of uncertainty may more accurately be expressed on the resulting
output uncertainty, not on the input uncertainty. If there exists a good reason
to use σcomp, however, it may be used with no other changes to the subsequent
procedure.

For each (σobs, σ̂calc) pair, define

GK(σobs, σ̂calc) = P (Lα(σobs, σ̂calc) < K)

where K is a target interval length, chosen a priori, and P is a standard probability
measure. The specific value of K will depend on both the goals of the experiment
and the experimenter’s level of comfort with different levels of uncertainty, but
assume it is constant and known. A reasonable goal, then, is to find a region in
the space of (σobs, σ̂calc) such that

Bp,K = {(σobs, σ̂calc) | GK(σobs, σ̂calc) ≥ p}

for some given probability p and target interval length K. Presumably, p will be
chosen as large value, though it will likely depend on the problem at hand. Assume
that it is fixed and chosen a priori. Bp,K then gives the set of (σobs, σ̂calc) values
such that the probability GK of the resulting α% interval length Lα being less
than K is greater than or equal to p.

Lastly, define C(σobs, σ̂calc) as the (usually nonlinear) cost of using σobs and
the chosen level of computational error for the analysis, however cost is defined
in the context of the problem. Then taking C(Bp,K) produces a cost for each
set of (σobs, σ̂calc) in the set of values that give the target interval length. Using
this, the experimenter can take budgetary constraints into the decision-making
process. It may be, for example that identical results can be obtained from simply
investing more time into the approximate computation to decrease σ̂calc rather
than construction of an expensive new facility to decrease σobs.

Suppose that α = 0.95, K = 2, and p = 0.8, indicating that a 95% confi-
dence interval is desired for the quantity of interest and the goal is to determine
the boundary of the region such that the probability of the interval length being
less than 2 is 0.80. In notation, the goal of the iterative procedure as described in
Section 3.1 would be to determine B0.8,2, which is the set of (σobs, σ̂calc) at which
the probability G2(σobs, σ̂calc) that the interval length L0.95(σobs, σ̂calc) is less than
2 is greater than or equal to 0.8. This will be a contour in the space of (σobs, σ̂calc)
values. Then C(B2,0.8) would produce a set of costs associated with each point in
the region, from which the optimal value could be chosen.

4 Example: Diffusion Equation

The one-dimensional diffusion equation is a partial differential equation of the form

∂u

∂t
= D

∂2u

∂x2
(6)

This equation is numerically stable and can be solved by a number of computa-
tional methods, given initial and boundary conditions. Define ux,t = u(x, t) as in
equation (2). For all instances of the system in this paper, the initial condition
is given by the function ux,0 = 1 − x2 for x in the the range [−1, 1]. Dirichlet
boundary conditions are u−1,t = u1,t = 0 for all t. A total of Nx = 100 equidis-
tant points are used between −1 and 1 using this initial condition, and a total of
Nt = 100 time steps are taken with step size h = 0.05 up to a maximum time
of T = 5.00. A backward Euler method coded in the R programming language

from the modified code of Gardner (2018) was used to find the solution ux,t given
for the partial differential in Equation (6). The state of the system in the range
[−1, 1] is shown for three time steps of a run with diffusion constant D = 1 below
in Figure 1.

Figure 1: A single solution of the diffusion equation with diffusion constant
D = 1 is shown at time t = 0.05, 2.50, and 5.00. The point u0,5.00 is taken as
the observation for a solution of the system for a given diffusion constant -
the value of u0,t is indicated by the vertical line.

A key question is whether the diffusion constant D for a given system can
be identified from the output of a single run. For the set of initial conditions used
in this paper, the answer is yes - and in fact, only a single point is needed to make
the identification. Though any point can reasonably be used, take u0,5.00 as the
observation from a single run of a single system. The value of this point follows a
monotonic negative exponential model as a function of the diffusion constant D,
as shown below in Figure 2.

Figure 2: The value of u0,5.00 after the final time step is shown as a function
of the diffusion constant D. The plot clearly shows a monotonic, nonlinear,
negative exponential relationship between the two. Given a positive value
for u0,5.00, it is possible to precisely identify a value of D which produces that
observation.

If u0,5.00 is known with perfect accuracy, then the monotonicity of the
response in Figure 2 allows the corresponding value of D to also be identified
with perfect accuracy. Suppose, however, that the code is stochastic and that for
reasons of time or money, accuracy of computation must be sacrificed. A range of
values is then possible for D which, if combined with noisy physical observations,
allows calibration to proceed with both observational and computational noise.

4.1 Gaussian Process Calibration Model

Following Section 2, suppose that an experiment is to be performed for which a
run of the diffusion equation serves as an emulator for a physical system given
diffusion constant D. As in the previous section, the goal is to determine D from
u0,5.00. Let ysim and yobs be as defined in Section 2, where each data point is
the observation u0,5.00 from either the computer emulator or the observed phys-

ical system, respectively. Though the step size h has been discussed a form of
computation error, in one-dimensional systems such as the diffusion equation the
effect of this added noise is so small as to be imperceptible in most cases. Instead,
random noise is artificially added at each iteration of the solver as in equation (3).
The noise was normally distributed with mean 0 and standard deviation σcomp, as
in equation (4). By directly controlling the value of σcomp, the control that the
experimenter has over the stochasticity of the code is approximated.

The model for the simulated points, with approximate computation noise
σcalc and observational noise σobs, can be written as

ysimi ∼ GP (0m,K(Di, Dj) + σ2calcIm×m) (7)

where σcalc is as in Section 2 and the correlation function K(D1, D2) is defined as

K(Di, Dj) = γ2 exp

[
−(Di −Dj)

2

2ρ2

]
(8)

The parameters γ, ρ, and σcalc are unknown and must be estimated.
In lieu of physical observations, high-precision points were used from the

emulator, as described in Section 3. These were calculated as results from the
emulator, but using σcomp = 0. These points were identical for all data sets, as
in a real experiment they would likely be time-consuming to compute, and would
not be recreated for every iteration of the procedure described in Section 3.1.

Suppose there are n observed data points yobsi for i = 1, ..., n. The yobsi
are assumed to have a known θi as the corresponding diffusion constant to be
calibrated. Then the observed points also follow a Gaussian process

yobsi ∼ GP (0n,K(θi, θj) + σ2obsIn×n) (9)

where K(θi, θj) is as in Equation (8). The standard deviation of the observation
error σobs is assumed to be known, as the experimenter may have domain specific
knowledge of the uncertainty surrounding observations of the system.

The same joint Gaussian process is assumed for both the simulated and
observed data points in equations (7) and (9). The main difference between the
two sets of points is that for each ysimi the diffusion constant Di is known but the
standard deviation σcalc of the noise on the observations must be estimated, while
for yobsi the standard deviation σobs on the noise is known but the diffusion constant
θi must be estimated. The goal is to fit a joint Gaussian Process regression to the
ysimi and the yobsi , estimating γ, ρ, and σcalc while simultaneously calibrating the
θi corresponding to each observation.

4.2 Data Simulation

The experimenter would like to know the effect of manipulating each amount of
noise on the resulting analysis in order to determine acceptable values of σobs and
σcalc. To that end, a total of 28 equally spaced values between 10−4 and 10−1 were
chosen for both σobs and σcomp. These values were used to generate random data
from the model described in Section 4.1. A Gaussian process was fit to these data,
including calibration for unknown θi. For each pair of (σcomp, σobs) values, a total
of 100 data sets were simulated, for a total of 78400 data sets.

For each data set, the diffusion constants chosen for simulation wereDSim =
{0.125, 0.575, 1.025, 1.475, 1.925}. At each value of DSim, a total of Nrep = 5 runs
of the solver given in Section 4 were performed, with added computational error
as described in equations (3) and (4) in Section 2.

Three values of D were chosen for calibration, with a total of 1 data point
per value: DObs = {0.3125, 0.5600, 1.7500}. For each data point, the point yobs was
calculated, and assumed to be a draw from a N(0, σ2obs) distribution. Following
Section 2, these observations were calculated from the solver with no added error.

This gives a total of m = 25 simulated data points ysimi and n = 3 observed
data points yobsi . For each new data set, the ysimi are generated anew. The yobsi are
identical for all data sets. An example data set and corresponding GP regression
is shown below in Figure 3.

Figure 3: The output from a single run of the combined estimation and
calibration for the diffusion equation using a Gaussian process is shown. The
red lines represents the observed points yobsi ± 3σobs, and their location along
the horizontal axis is given by the mean posterior calibrated value of D. The
blue points are simulated data points ysimi at known values of D, each of
which used five points. The shaded black lines represent draws from the
Gaussian process regression.

The particular values of DNew were chosen to be “moderate”, “difficult”,
and “very difficult” to calibrate, respectively. So long as the noise is not large
in both simulations and observations, the model should realistically be able to
calibrate DObs = 0.3125, as it lies within a region of rapid change of u0,5.00 as a
function of the diffusion constant, even with added uncertainty. Conversely, except
in cases of very small noise in both simulations and observations, the model should
be unable to calibrate DObs = 1.7500, as it lies in a region of very slow change of
u0,5.00 as a function of the diffusion constant, so that with added uncertainty from
the model virtually any diffusion constant from roughly D = 0.75 to the maximum
of D = 2 is possible.

4.3 Estimation

A Bayesian MCMC approach was used to estimate the model. Using priors ρ ∼
Inverse Gamma(5, 5), γ ∼ N(0, 1), θi ∼ Uniform(0, 2), and σcalc ∼ Uniform(0, 1),
a total of 25000 draws were taken after 5000 burn-in draws for each of four chains.
Initial values were ρ∗(0) = 0.8, γ∗(0) = 0.65, σ0comp,0 = σcalc, and θ∗0,i = Dsim,i for
all four chains. essentially using “true” values used to generate the data where
possible, and reasonable estimates where not possible. The STAN programming
language was used to perform the MCMC. Though it is not possible to check all
78400 sets of chains, a random sample from the data sets showed good convergence
in all chains.

Quantities measured include the mean, standard deviation, and 95% cen-
tral interval lengths for the posteriors of each of the parameters γ, ρ, and σcalc,
and for each of the three calibrated diffusion constants θ1, θ2, and θ3. Intervals
were obtained simply by taking quantiles from the combined posterior chains past
the burn-in period. Two example calibration distributions for θ1 and θ3 in a given
run of the solver are shown below in Figure 4.

Figure 4: For a calibrated run of the diffusion equation with σobs = 10−4

and σcomp = 10−4, the calibration posterior distributions for θ1 and θ3 are
shown. The diffusion equation constant θ1 is well identified, but the posterior
distribution for θ3 is multimodal, indicating a number of values which would
fit equally well.

4.4 Confidence Interval Lengths

Consider the length of the 95% interval for θ1, the unknown diffusion constant
corresponding to the yobsi made with Dobs = 0.3125, and which the model should
be able to calibrate except in the presence of large noise on both simulations and
observations. In terms of the notation of Section 3.2, this is L0.95(σobs, σ̂calc). Plots
of the mean length of the confidence interval over the 100 total simulations at each
(σobs, σ̂calc) pair and for each are shown below in Figure 5.

Figure 5: On the left, a plot showing the mean 95% interval width for the
calibrated value of θ1, as a function of both σobs and mean σ̂calc for a given
σcomp. On the right, a plot of the 95% interval width for each of the 78,400
runs for the calibrated value of θ1 as a function of σobs and σ̂calc. Notice the
sigmoidal shape - as the uncertainty increases for either source, the interval
length grows as the model is increasingly unable to identify an accurate value.
For the largest values of each uncertainty, the posterior is multimodal over
the range of considered diffusion constants.

The shape is essentially sigmoidal. For large value of both σobs and σ̂calc
(induced by a specified σcomp), the confidence interval width is wide. For small
values, the confidence interval width is small. For intermediate values, there is a
clear decreasing average interval width, though the rate of decrease is larger for
σobs than σ̂calc. For both, there exists variance at all values other than the highest
and lowest.

4.5 Response Surface

The goal, of course, is not the interval length L0.95(σcomp, σ̂calc), but rather the
probability that the interval length is less than some specified value K given by
GK(σobs, σ̂calc). One possible approach is to calculate this empirically, but the dis-
advantage to this approach is that such empirical calculation depends on having a
large number of L0.95(σcomp, σ̂calc). This is is unlikely to be the case in real appli-
cations. An alternative is to fit a response surface, such as a Gaussian process or
a polynomial response surface, and use uncertainty from the surface to determine
estimates of GK(σobs, σ̂calc). As previously discussed in Section 3.1 and shown in
figure 5, the response surface shows non-constant variance. Additional complica-
tions for this data set are non-normality of error, particularly for small values of
σobs and σ̂calc, and that any intervals must necessarily account for the fact that a
confidence interval can not, by definition, be smaller than zero. These issues are
mitigated by applying a log transformation to the interval lengths.

For the log transformed interval lengths, a polynomial response surface was
fit using a stepwise regression method. The response surface used weighted least
squares estimation method to capture the non-constant variance, with weight for
a certain (σobs, σ̂calc) point proportional to the inverse of the variance of interval
lengths for all 100 simulations at each corresponding (σobs, σcomp). Prediction
intervals were obtained. The log confidence interval widths, estimated response
surface, and 95% prediction intervals are shown below in Figure 6.

Figure 6: The log interval widths with predicted values given by a polyno-
mial response surface found using stepwise regression. The red points are
predicted values and the blue points show upper and lower 95% prediction
interval boundaries.

Using the standard error for prediction, calculation of GK(σobs, σ̂calc) is
direct for any given K. Suppose that, for the diffusion equation calibration prob-
lem, the experimenter is interested in K = −1.386 for the log response surface,
which is equivalent to K = 0.25 on the untransformed interval widths. Given a
predicted mean interval width L̂ with estimated standard error of prediction se(L̂),
determined directly from the response surface, the quantity G−1.386 is given by

G−1.386(σobs, σ̂calc) =

∫ −1.386
−∞

φ

(
x− L̂
se(L̂)

)
dx

where φ(·) is the standard normal probability density function.
This may be applied to each (σobs, σ̂calc) to obtain the function G−1.386.

Lastly, suppose that a p = 0.8 is desired for the resulting log interval width to
be less than −1.386. This area is the region B0.8,−1.386, and can be determined
empirically. A plot of G−1.386 is shown below in Figure 8 with the region B0.8,−1.386
highlighted in red.

Figure 7: For the response surface in Figure 6 , a plot of G−1.386(σobs, σ̂calc).
Points colored red are those above a probability threshold of p = 0.8, indicat-
ing an 80% or higher probability that the resulting interval width obtained
from these levels of observational and computational error will be below
e−1.386 = 0.25. This region is B0.8,−1.386.

4.6 Costs and Boundaries

Lastly, suppose that the cost of using a particular (σobs, σ̂calc) pair is given approx-
imately by the function

C(σobs, σ̂calc) = | log(σobs)|+ 2| log(σ̂calc)| − | log(σobs + σ̂calc)| (10)

Then plugging B0.8,−1.386 into Equation (10) to obtain C(B0.8,−1.386), the
cost surface for the ideal region is obtained, and shown below in Figure 8.

Figure 8: For the B0.2,−1.386 region highlighted in Figure 8 , a plot of the cost
of each (σobs, σ̂calc) is shown using Equation 10.

From this surface, the cost at each point on the boundary of the region,
or any point within, may be obtained. Ideally, the goal would be to choose value
of σobs and σ̂calc that minimize the cost. For the cost function in Equation (10)
and the diffusion equation data, the cost is minimized by using σobs = 0.0297 and
σ̂calc = 0.0818129, corresponding to a σcomp = 0.0334.

5 Conclusion and Future Work

This paper has dsecribed a reasonable framework for modeling both computa-
tional and observational uncertainty in computer experiments. The goal . To that
extent, a framework, including notation, has been developed for incorporating
and comparing both observational and computational uncertainty into a coher-
ent framework, and for comparing the effects of both on the resulting quantities
of interest. This framework has been applied to an example using the Duffing
equation, and is able to accurately identify a potential set of observational and
computational uncertainty that optimizes a cost function.

The diffusion equation example of Section 4 implemented the framework
of Section 3 only after a time-intensive large number of simulations had been per-
formed in order to easily estimate the boundary for the region Bp. To be used in

practice, this method must be expanded to encompass a stepwise search for the
boundary based likely only off an initial sample within the space of σobs and σ̂calc.
The key difficulty to this search is the non-constant variance. In the polynomial
response surface in Figure 6, a weighted least squares estimation technique was
used with weights determined using the large number of simulations. In a real
search, this resource is unavailable, and so any parameters or properties of the
non-constant variance must be estimated as the search is in progress. This poses a
formidable challenge, but there exists information. The form of the heteroskedas-
ticity is likely to remain constant, as variance will tend to be smallest in areas
of simultaneous large and simultaneous small values of σobs and σ̂calc, and larger
where one is small and the other large. The error is likely to be skewed towards
larger values, as confidence interval lengths are bounded below by zero. Finally,
the variance will likely be related to the rate of change of the response surface.
If this problem can be solved, the iterative procedure of Section 3.1 may be used
to approximate the costs and benefits of lowering computational or observational
uncertainty before an experiment is conducted.

References

Baker, A. H., Hammerling, D. M., Levy, M. N., Xu, H., Dennis, J. M., Enton, B.,
Edwards, J., Hannay, C., Mickelson, S. A., Neale, R., Nychka, D., Shollenberger,
J., Tribbia, J., Vertenstein, M., and Williamson, D. (2015), “A new ensemble-
based consistence test for the Community Earth System Model (pyCECT v1.0),”
Geoscientific Model Development, 8, 2829–2840.

Bect, J., Ginsbourger, D., Li, L., Picheny, V., and Vazquez, E. (2012), “Sequential
design of computer experiments for the estimation of a probability of failure,”
Statistics and Computing, 22(3), 773 – 793.

Cavin, R. K., Lugli, P., and Zhirnov, V. V. (2012), “Science and Engineering
Beyond Moore’s Law,” Proceedings of the IEEE, 100(Special Centennial Is-
sue), 1720–1749.

Chevalier, C., Bect, J., Ginsbourger, D., Vazquez, E., Picheny, V., and Richet,
Y. (2014), “Fast Parallel Kriging-Based Stepwise Uncertainty Reduction With
Application to the Identification of an Excursion Set,” Technometrics, 56(4), 455
– 465.

Fehlberg, E. (1969), Low-order classical Runge-Kutta formulas with step size con-
trol and their application to some heat transfer problems,, Technical Report
315, NASA.

Gardner, C. (2018).
URL: https://math.la.asu.edu/ gardner/522.html

Higdon, D., Kennedy, M., Cavendish, J., Cafeo, J., and Ryne, R. (2004), “Com-
bining Field Data and Computer Simulations for Calibration and Combining
Field Data and Computer Simulations for Calibration and Prediction,” SIAM
Journal on Scientific Computing, 26, 448–466.

Kennedy, M., and O’Hagan, A. (2001), “Bayesian Calibration of Computer Mod-
els,” Journal of the Royal Statistical Society B, 63(3), 425 – 464.

Marques, A. N., Lam, R. R., and Willcox, K. E. (2018), “Contour location via
entropy reduction leveraging multiple information sources,”, arXiv:1805.07489
[stat.ML].

Milroy, D. J., Baker, A. H., Hammerling, D. M., Dennis, J. M., Mickelson, S. A.,
and Jessup, E. R. (2016), “Towards characterizing the variability of statistically
consistent Community Earth System Model simulations,” Procedia Computer
Science, 80, 1589 – 1600.

Ranjan, P., Bingham, D., and Michailidis, G. (2008), “Sequential Experiment De-
sign for Contour Estimation From Complex Computer Codes,” Technometrics,
50(4), 527–541.

Stensrud, D. J., Bao, J.-W., and Warner, T. T. (2000), “Using Initial Condi-
tion and Model Physics Perturbations in Short-Range Ensemble Simulations of
Mesoscale Convective Systems,” Monthly Weather Review, 128(7), 2077–2107.

Victor, P., Ginsbourger, D., Roustant, O., Haftka, R. T., and Kim, N.-H. (2010),
“Adaptive Designs of Experiments for Accurate Approximation of a Target Re-
gion,” Journal of Mechanical Design, 132(7).

